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Exploiting work of Wiles, DeligneRibet, FrohlichTaylor, and Serre for
equivariant Iwasawa theory

This talk concerns an equivariant extension of classical Iwasawa theory. Here is the set-up.

k1 /E is a finite Galois extension of totally real number fields, G its Galois group, [
an odd prime number, and S a finite set of places of k containing all archimedean
places and those dividing [ . Moreover, ks is the cyclotomic Z;-extension of
k, Tr = Gal(koo /k) = (W) ~ Z;, K = kikeo, G = Gal(K/k), H = Gal(K/k)
(hence H is a finite normal subgroup of G). And finally, M is the maximal abelian [-
extension of K which is unramified outside S, so the Galois group X = Gal(M/K)
is the Iwasawa module. One knows that X is a finitely generated torsion AG-

module with AG = Z;[[G]] denoting the completed group ring of G over Z;.

If G1, and thus G, is abelian, and if [ 1 |G1| (I 1 | H| would suffice), then AG splits into the direct
sum €P, Z[x][[T]] of power series rings as shown, with the sum ranging over the irreducible
characters of G (respectively of H) modulo the Gal(Q;¢/Qy)-action, and, accordingly, X splits
into the direct sum of the y-eigenspaces XX whose characteristic polynomials (in Z;[x][[T]])
can be obtained from the S-truncated Artin L-functions Ly, /i s(s, x). Indeed, Iwasawa for
k = Q and Pierrette Cassou-Nogués (also Barsky and DeligneRibet) for arbitrary totally real
k 2 have shown
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with Gy s(T') € Z[x][[T]] and H\(T') € Z;[x][T] an easy polynomial reflecting the possible
pole at s = 1 of L, /x.5(s, x)- The Main Conjecture of Iwasawa theory, proved by MazurWiles
1984 for £ = Q and by Wiles 1990 for any totally real k, states that, up to a unit in Z;[x]|[[T]],
Gy,s(T) is the characteristic polynomial of XX.

Our (and everything in this talk is taken from joint work with A. Weiss) - our motivation for
searching an equivariant extension of this Main Conjecture, that is to say, an Iwasawa theory
applying to Galois extensions kj /k without assuming that G is abelian or [ 1 |G|, arose from
our work on Chinburg’s conjecture which relates the root numbers in the functional equation
of the Artin L-functions with the Galois structure of the unit group of k. In 2002 we proved
this conjecture away from 2 for absolutely abelian totally real k1 and felt that in order to

study more general cases we needed an equivariant Iwasawa theory.

No result in this talk depends on a special choice of S.
21§ |G1| is not needed here



The first problem that comes up in the general situation K/k is how to get some control
on the AG-module X. Encouraged by the FrohlichTaylor work on the Galois structure of
the ring ox of integers of N for tame Galois number field extensions N/Ny, we lifted their
K-theoretical set-up to the Iwasawa setting and looked for an element U in the Grothendieck
group KoT'(AG) of finitely generated torsion AG-modules of finite projective dimension, which
would reflect the Iwasawa module X. Note that X is torsion but generally does not have finite

projective dimension. Here is our refinement U € K¢T'(AG) of X :

The exact sequence of Galois groups, X — Gal(M/k) — G, induces the exact sequence
A(Gal(M/k), X) — A(Gal(M/k)) - AG

of group rings, which, on dividing out A(Gal(M/k), X)A(X), yields an exact AG-module
sequence X — Y — A(G), since A(Gal(M/k), X)/A(Gal(M/k), X)A(X) ~ X, as X is
abelian. The Safarevi¢ Weil theorem giving the extension class of the above Galois group
sequence implies that Y has finite projective dimension. Now it is possible to fill in the shown

vertical maps in the commutative diagram
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Set U = [coker ¥] — [coker¢)] € KoT'(AG); U is independent of special choices of ¥ or 1. If
G was abelian and [ 1 |H|, then the bottom sequence in the diagram could just be read as
[X] — [Z;] = U, and the classical Main Conjecture says that [X] is represented by G, s(7T')
and [Z] by the ‘pole’ H,(T).

In order to find a representing homomorphism of U in general, we invoke the localization

sequence of K-theory to the pair
AG and QG ={%,a€ AG,0#bc Al for some central I' ~ Z; in G} 3

which displays the map 0 in the exact sequence K;(AG) — K;(QG) LN KoT(AG) . Moreover,
the reduced norm on the Wedderburn components of the semi-simple QI'y-algebra QG yields

the map
Det : K1(QG) — Hom™(R)(G), (Q°Tk)™),

where R;(G) is the Z-span of the Q;°-irreducible characters x of G with open kernel, Q°T'y, =
Q¢ ®q, QI'k, and * indicates a natural compatibility of the homomorphisms with, on the one
hand, the action of Gal(Q;°/@Q;) and, on the other, twisting the argument x with a W-type
character p, i.e., a p that is inflated from G/H ~ T'.

3QG does not depend on the choice of T'.



Here is the definition of ‘Det’: Note first that the Wedderburn components W, of QG are in 1-
1 correspondence with the y modulo the %-action. Now, K1(QG) ~ (QG)* /[(QG)*, (QG)*],
hence represent ¢ € K1(QG) by e € (QG)* and set Det (¢) = [y + nrw, (ey)] with e, the
component of e in W,. So nryy, (ey) is in the centre of W,, which is naturally contained in
QT
Putting things together, we have arrived at the triangle

K1(0G) -5 K T(AG)

with the distinguished Iwasawa element U in
Det |

K T(AG).
Hom™(Ry(G), (QTk)*)
Define the Iwasawa L-function L by
Gys(m —1)
L(x) = —* € QTy;
W= - <9

this is independent of a special choice of ;. The standard properties of the Artin L-functions
imply L € Hom*(R;(G), (Q°Tk)*). Note here that the characters x have open kernel, so x
is actually a character of the Galois group of a finite totally real Galois extension of k, for
which the representation G g(u® —1)/H, (u® — 1) of the S-truncated [-adic Artin L-function

has been shown by Greenberg on using Brauer induction.

The ‘equivariant main conjecture’ of Iwasawa theory, which we formulated in 2002/2003,
relates this Iwasawa L-function and U by means of a ‘Stickelberger element’ © in K;(QG)
like so

(emc) 30 € K1(QG): Det(©) =L and 9(0) =0 .

In the classical case this is exactly the Main Conjecture. If SK;(QG) was trivial, as would
follow from a conjecture of Suslin concerning center fields of cohomological dimension 3 (QI'y
is such a field), we could actually say that the Iwasawa L-function L determines the Iwasawa
module X (even its refinement U); (emc) exhibits a bridge between L and U by means of ©,
though.

By the way, the corresponding bridge in the work of FrohlichTaylor connects the Cassou-
Nogués root number class in the Hom-group with the difference [on] — [P, 0n,a”] in
KoT(Z[Gal(N/Ny)]) , where {a”,0 € Gal(N/Np)} is a normal basis of N over Np.

We can prove (emc) only when the Iwasawa invariant i/, vanishes, i.e., when the I-torsion
part of X is finite (as Iwasawa conjectures). For simplicity, from now on I will also assume
that K/k is a pro-l extension.

Denote by AG' = { ¢ : a € AG, 0 # b € AI' not divisible by /;I" ~ 7Z; central in G} the
localization of AG at | 4 and define analogously X,, U, ds . Observe that 0, for pro-I groups
G, maps K1(QG) surjectively on KoT'(AG). Note also that pg/, = 0 implies Xo = Ue = 0.
As U € im (9), there is a preimage x of U in K;(QG) which comes from K;(A.G). Now, if we
knew that L = Det A for some A € K1(AsG), the element Det (zA™1), by classical Iwasawa

4Again, AoG does not depend on the choice of T.



theory, would belong to Hom* (R;(G), (A°T)*) and at the same time to Det K1(AesG), hence
already to Det K1(AG) as follows from extending the FrohlichTaylor integral logarithm to
the Iwasawa setting; in fact, by means of this logarithm determinants can be detected. Thus,
Det (xA~!) = Det (z) with z € K1(AG), asnd consequently L = Det (vz~1), d(xz~ 1) = U.
This yields

THEOREM A. 30 <= L = Det (\) € Det K1(AG)

Such A € K (A.G) will be called pseudomeasures. For abelian G the pseudomeasure is uni-
quely determined by L and coincides with Serre’s pseudomeasure introduced in his 1978 paper
on the work of DeligneRibet.

The integral logarithm L in the Iwasawa setting is defined by the commutative square

K1(AG) L T(QG)

Det | Tr | ~
HOM(R)(G), (ASTx)*) & Hom*(Ry(G), Q°Ty)

with T'(QG) “oa /{ab — ba), ‘Tr’ the composition of the reduced traces on the Wedderburn

components of @G, so ‘“Ir’ is an isomorphism, and with

)

V(f(¥ix))

for f € HOM, the subgroup of the f € Hom* satisfying f(x) € (ASTx)* def (Z)° @7, AoT') ™

and the congruence

LK) = 1 log

FOO)' = U (f(rx) mod I

where W is induced by the endomorphism of Z;[[T]] sending T to (1+T)!—1 and where 1)y is the
Adams operation 9;x(g) = x(g') for g € G. As a matter of fact, all f € Det K1(A.G) belong
to HOM and also L € HOM as follows from the Main Conjecture in the abelian situation

and, in general, from applying explicit Brauer induction (due to Snaith and Boltje).®

The above diagram allows us to define the logarithmic pseudomeasure t € T(QG) by

however, we do not know whether ¢ € im (IL). And, in fact,

THEOREM B. t = L(y) with y € K1(AeG) = Det (y) differs from L by a torsion element
in HOM, which is trivial precisely when, for all sections G' of G (i.e., G' = U/N with
U open in G and N < U finite) having an abelian subgroup A’ of index 1, the

torsion congruence Ver?(;,)ab()\((;/)ab) = Ax mod trg aAe A’ holds,

5Since AoG is not I-complete, the use of ‘log’ may require to replace AG by its I-completion; this does not
affect our arguments though.



in which Ay, Aar are the pseudomeasures attached to the abelian groups (G A re-
spectively, and where Ver(‘é,)ab is the group transfer (G')* — A’ lifted to K1(Ae(G")?) —
K1(AJA).

Necessity of the torsion congruence is obtained from fine-tuning C.T.C. Wall’'s work on
torsion determinants of group rings of finite groups of prime power order, which yields
veré;,)abdeﬂ((f/)abg = res &e mod tr ¢ sar(AeA) for units € € AgA (a fact that has already
been used in the proof of Theorem A). It then takes the DeligneRibet g-expansion principle
for Hilbert modular forms to confirm the last congruence with deﬂ(Gc,’l)abe, res éis replaced by
A(aryab » Aar, respectively.

REMARK. FrohlichTaylor have a somewhat analogous result. However, with them it is the
DavenportHasse formula which takes care of the torsion elements in Hom; on the other hand,

the ‘equivalent’ of ‘¢t € imIL’ is a direct consequence of the tameness assumption.

To finish the proof of (emc), i.e., t € im L, we, however, need three more ingredients.

Firstly, a restriction map Res? : T(QG) — T(QU) for open subgroups U of G, which com-
mutes with the obvious restriction res¥ : K1(AeG) — K1(AJU). This ‘Res’, which is a com-
plicated map and differs quite drastically from the canonical ‘res’ on T'(QG), together with
the natural deflation maps induced by U — U/N to finite normal subgroups N of U, allows
us to pass to sub- and factor groups and thus to employ an induction argument on the order
of G/Z(G), which is simultaneously carried out on both sides of the logarithmic diagram: on
the left (multiplicative) side by using further congruences on abelian pseudomeasures, and on
the right (additive) side where we profit from the uniqueness of ¢. I should perhaps remark

that there is no analogue of ‘Res’ in the work of FrohlichTaylor.

Secondly, we need a new congruence on units in AG, namely the so-called Mdébius- Wall

congruence

THEOREM Cl. 4 p<q po(U/A)verii(resYe) =0 mod trg(AeA) for units € € AoG.

Here, A is an abelian normal open subgroup of G, @ def G/A and pg is the Mobius function
on the partially ordered set of subgroups of the finite I-group @, so pug(l) = 1, po(Q') =

- ZlSQ“<Q/ MQ(Q//> for 1 7& Q/ < Q

And thirdly, this congruence between Serre’s abelian pseudomeasures
THEOREM C2. ), p<q po(U/A)verit(Ayar) =0 mod trg(AeA)

So res gs has been replaced by Ajab € K1(AU?) in Theorem C1. Note that C2 repeats the
torsion congruence if [G : A] = L.

The proof of Theorem C1 is very technical and, to be honest, ugly. Theorem C2 can again
be derived from the DeligneRibet g-expansion principle for Hilbert modular forms (and thus

their paper, besides the one of Wiles on the Main Conjecture, is the second basic ingredient



in our proof of (emc)). Both congruences combined permit us to run the above mentioned
induction argument (on the index [G : Z(G)]) for getting ‘¢ € im (IL)’. However, carrying out
all this is probably too much for now and, already for time restrictions, I better don’t go closer

into the details of the proof anymore.



