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Exploiting work of Wiles, DeligneRibet, FröhlichTaylor, and Serre for
equivariant Iwasawa theory

This talk concerns an equivariant extension of classical Iwasawa theory. Here is the set-up.

k1/k is a finite Galois extension of totally real number fields, G1 its Galois group, l
an odd prime number, and S a finite set of places of k containing all archimedean
places and those dividing l 1. Moreover, k∞ is the cyclotomic Zl-extension of
k, Γk = Gal(k∞/k) = ⟨γk⟩ ≃ Zl, K = k1k∞, G = Gal(K/k), H = Gal(K/k∞)

(henceH is a finite normal subgroup ofG). And finally,M is the maximal abelian l-
extension of K which is unramified outside S, so the Galois group X = Gal(M/K)

is the Iwasawa module. One knows that X is a finitely generated torsion ΛG-
module with ΛG = Zl[[G]] denoting the completed group ring of G over Zl.

If G1, and thus G, is abelian, and if l - |G1| (l - |H| would suffice), then ΛG splits into the direct
sum

⊕
χ Zl[χ][[T ]] of power series rings as shown, with the sum ranging over the irreducible

characters of G1 (respectively ofH) modulo the Gal(Ql
c/Ql)-action, and, accordingly,X splits

into the direct sum of the χ-eigenspaces Xχ whose characteristic polynomials (in Zl[χ][[T ]])
can be obtained from the S-truncated Artin L-functions Ll,k1/k,S(s, χ). Indeed, Iwasawa for
k = Q and Pierrette Cassou-Noguès (also Barsky and DeligneRibet) for arbitrary totally real
k 2 have shown

Ll,k1/k,S(1− s, χ) =
Gχ,S(u

s − 1)

Hχ(us − 1)
(s ∈ Zl , u ∈ 1 + lZl satisfying ζγkl∞ = ζul∞)

with Gχ,S(T ) ∈ Zl[χ][[T ]] and Hχ(T ) ∈ Zl[χ][T ] an easy polynomial reflecting the possible
pole at s = 1 of Ll,k1/k,S(s, χ). The Main Conjecture of Iwasawa theory, proved by MazurWiles
1984 for k = Q and by Wiles 1990 for any totally real k, states that, up to a unit in Zl[χ][[T ]],
Gχ,S(T ) is the characteristic polynomial of Xχ.

Our (and everything in this talk is taken from joint work with A. Weiss) - our motivation for
searching an equivariant extension of this Main Conjecture, that is to say, an Iwasawa theory
applying to Galois extensions k1/k without assuming that G1 is abelian or l - |G1|, arose from
our work on Chinburg’s conjecture which relates the root numbers in the functional equation
of the Artin L-functions with the Galois structure of the unit group of k1. In 2002 we proved
this conjecture away from 2 for absolutely abelian totally real k1 and felt that in order to
study more general cases we needed an equivariant Iwasawa theory.

1No result in this talk depends on a special choice of S.
2l - |G1| is not needed here



The first problem that comes up in the general situation K/k is how to get some control
on the ΛG-module X. Encouraged by the FröhlichTaylor work on the Galois structure of
the ring oN of integers of N for tame Galois number field extensions N/N0, we lifted their
K-theoretical set-up to the Iwasawa setting and looked for an element f in the Grothendieck
groupK0T (ΛG) of finitely generated torsion ΛG-modules of finite projective dimension, which
would reflect the Iwasawa module X. Note that X is torsion but generally does not have finite
projective dimension. Here is our refinement f ∈ K0T (ΛG) of X :

The exact sequence of Galois groups, X � Gal(M/k) � G, induces the exact sequence

∆(Gal(M/k), X) � Λ(Gal(M/k)) � ΛG

of group rings, which, on dividing out ∆(Gal(M/k), X)∆(X), yields an exact ΛG-module
sequence X � Y � ∆(G), since ∆(Gal(M/k), X)/∆(Gal(M/k), X)∆(X) ≃ X, as X is
abelian. The Šafarevič Weil theorem giving the extension class of the above Galois group
sequence implies that Y has finite projective dimension. Now it is possible to fill in the shown
vertical maps in the commutative diagram

ΛG = ΛG

Ψ ↓̌ ψ ↓̌
X � Y � ΛG � Zl

∥ ↓̌ ↓̌ ∥
X � cokerΨ → cokerψ � Zl

from which one arrives at the tor-
sion modules cokerψ, cokerΨ which
obviously have finite projective di-
mension.

Set f = [cokerΨ] − [cokerψ] ∈ K0T (ΛG) ; f is independent of special choices of Ψ or ψ. If
G was abelian and l - |H|, then the bottom sequence in the diagram could just be read as
[X] − [Zl] = f, and the classical Main Conjecture says that [X] is represented by Gχ,S(T )

and [Zl] by the ‘pole’ Hχ(T ).

In order to find a representing homomorphism of f in general, we invoke the localization
sequence of K-theory to the pair

ΛG and QG = { a
b , a ∈ ΛG, 0 ̸= b ∈ ΛΓ for some central Γ ≃ Zl in G} 3 ,

which displays the map ∂ in the exact sequence K1(ΛG) → K1(QG)
∂→K0T (ΛG) . Moreover,

the reduced norm on the Wedderburn components of the semi-simple QΓk-algebra QG yields
the map

Det : K1(QG) → Hom∗(Rl(G), (QcΓk)
×) ,

where Rl(G) is the Z-span of the Ql
c-irreducible characters χ of G with open kernel, QcΓk =

Ql
c⊗Ql

QΓk, and ∗ indicates a natural compatibility of the homomorphisms with, on the one
hand, the action of Gal(Ql

c/Ql) and, on the other, twisting the argument χ with a W-type
character ρ, i.e., a ρ that is inflated from G/H ≃ Γk.

3QG does not depend on the choice of Γ.
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Here is the definition of ‘Det’ : Note first that the Wedderburn components Wχ of QG are in 1-
1 correspondence with the χ modulo the ∗-action. Now, K1(QG) ≈ (QG)×/[(QG)×, (QG)×] ,
hence represent ε ∈ K1(QG) by e ∈ (QG)× and set Det (ε) = [χ 7→ nrWχ(eχ)] with eχ the
component of e in Wχ. So nrWχ(eχ) is in the centre of Wχ, which is naturally contained in
QcΓk.

Putting things together, we have arrived at the triangle

K1(QG)
∂−→ K0T (ΛG)

Det ↓
Hom∗(Rl(G), (QcΓk)

×)

with the distinguished Iwasawa element f in
K0T (ΛG).

Define the Iwasawa L-function L by

L(χ) =
Gχ,S(γk − 1)

Hχ(γk − 1)
∈ QcΓk ;

this is independent of a special choice of γk. The standard properties of the Artin L-functions
imply L ∈ Hom∗(Rl(G), (QcΓk)

×) . Note here that the characters χ have open kernel, so χ
is actually a character of the Galois group of a finite totally real Galois extension of k, for
which the representation Gχ,S(u

s − 1)/Hχ(u
s − 1) of the S-truncated l-adic Artin L-function

has been shown by Greenberg on using Brauer induction.

The ‘equivariant main conjecture’ of Iwasawa theory, which we formulated in 2002/2003,
relates this Iwasawa L-function and f by means of a ‘Stickelberger element’ Θ in K1(QG)
like so

(emc) ∃ Θ ∈ K1(QG) : Det (Θ) = L and ∂(Θ) = f .

In the classical case this is exactly the Main Conjecture. If SK1(QG) was trivial, as would
follow from a conjecture of Suslin concerning center fields of cohomological dimension 3 (QΓk

is such a field), we could actually say that the Iwasawa L-function L determines the Iwasawa
module X (even its refinement f); (emc) exhibits a bridge between L and f by means of Θ,
though.

By the way, the corresponding bridge in the work of FröhlichTaylor connects the Cassou-
Noguès root number class in the Hom-group with the difference [oN ] − [

⊕
σ oN0a

σ] in
K0T (Z[Gal(N/N0)]) , where {aσ, σ ∈ Gal(N/N0)} is a normal basis of N over N0.

We can prove (emc) only when the Iwasawa invariant µK/k vanishes, i.e., when the l-torsion
part of X is finite (as Iwasawa conjectures). For simplicity, from now on I will also assume
that K/k is a pro-l extension.

Denote by Λ•G = { a
b : a ∈ ΛG, 0 ̸= b ∈ ΛΓ not divisible by l ; Γ ≃ Zl central in G} the

localization of ΛG at l 4 and define analogously X•,f•, ∂• . Observe that ∂, for pro-l groups
G, maps K1(QG) surjectively on K0T (ΛG). Note also that µK/k = 0 implies X• = f• = 0.

As f ∈ im (∂), there is a preimage x of f in K1(QG) which comes from K1(Λ•G). Now, if we
knew that L = Detλ for some λ ∈ K1(Λ•G), the element Det (xλ−1), by classical Iwasawa

4Again, Λ•G does not depend on the choice of Γ.
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theory, would belong to Hom∗(Rl(G), (Λ
cΓk)

×) and at the same time to DetK1(Λ•G), hence
already to DetK1(ΛG) as follows from extending the FröhlichTaylor integral logarithm to
the Iwasawa setting; in fact, by means of this logarithm determinants can be detected. Thus,
Det (xλ−1) = Det (z) with z ∈ K1(ΛG) , asnd consequently L = Det (xz−1) , ∂(xz−1) = f .
This yields

Theorem A. ∃ Θ ⇐⇒ L = Det (λ) ∈ Det K1(Λ•G)

Such λ ∈ K1(Λ•G) will be called pseudomeasures. For abelian G the pseudomeasure is uni-
quely determined by L and coincides with Serre’s pseudomeasure introduced in his 1978 paper
on the work of DeligneRibet.

The integral logarithm L in the Iwasawa setting is defined by the commutative square

K1(Λ•G)
L→ T (QG)

Det ↓ Tr ↓ ≃

HOM(Rl(G), (Λ
c
•Γk)

×)
L→ Hom∗(Rl(G),QcΓk)

with T (QG) def
= QG/⟨ab− ba⟩, ‘Tr’ the composition of the reduced traces on the Wedderburn

components of QG, so ‘Tr’ is an isomorphism, and with

(L(f))(χ) =
1

l
log

f(χ)l

Ψ(f(ψlχ))

for f ∈ HOM, the subgroup of the f ∈ Hom∗ satisfying f(χ) ∈ (Λc
•Γk)

× def
= (Zl

c ⊗Zl
Λ•Γk)

×

and the congruence
f(χ)l ≡ Ψ(f(ψlχ) mod l

where Ψ is induced by the endomorphism of Zl[[T ]] sending T to (1+T )l−1 and where ψl is the
Adams operation ψlχ(g) = χ(gl) for g ∈ G. As a matter of fact, all f ∈ Det K1(Λ•G) belong
to HOM and also L ∈ HOM as follows from the Main Conjecture in the abelian situation
and, in general, from applying explicit Brauer induction (due to Snaith and Boltje). 5

The above diagram allows us to define the logarithmic pseudomeasure t ∈ T (QG) by

Tr(t) = L(L) ;

however, we do not know whether t ∈ im (L). And, in fact,

Theorem B. t = L(y) with y ∈ K1(Λ•G) =⇒ Det (y) differs from L by a torsion element
in HOM, which is trivial precisely when, for all sections G′ of G (i.e., G′ = U/N with
U open in G and N � U finite) having an abelian subgroup A′ of index l, the

torsion congruence verA
′

(G′)ab
(λ(G′)ab) ≡ λA′ mod trG′/AΛ•A

′ holds,

5Since Λ•G is not l-complete, the use of ‘log’ may require to replace Λ•G by its l-completion; this does not
affect our arguments though.

4



in which λ(G′)ab , λA′ are the pseudomeasures attached to the abelian groups (G′)ab, A′, re-
spectively, and where verA′

(G′)ab
is the group transfer (G′)ab → A′ lifted to K1(Λ•(G

′)ab) →
K1(Λ•A

′).

Necessity of the torsion congruence is obtained from fine-tuning C.T.C. Wall’s work on
torsion determinants of group rings of finite groups of prime power order, which yields
verA′

(G′)ab
defl(G′)ab

G′ ε ≡ resA
′

G′ε mod trG′/A′(Λ•A) for units ε ∈ Λ•A (a fact that has already
been used in the proof of Theorem A). It then takes the DeligneRibet q-expansion principle
for Hilbert modular forms to confirm the last congruence with defl(G′)ab

G′ ε , resA
′

G′ε replaced by
λ(G′)ab , λA′ , respectively.

Remark. FröhlichTaylor have a somewhat analogous result. However, with them it is the
DavenportHasse formula which takes care of the torsion elements in Hom; on the other hand,
the ‘equivalent’ of ‘ t ∈ imL’ is a direct consequence of the tameness assumption.

To finish the proof of (emc), i.e., t ∈ imL, we, however, need three more ingredients.

Firstly, a restriction map ResUG : T (QG) → T (QU) for open subgroups U of G, which com-
mutes with the obvious restriction res UG : K1(Λ•G) → K1(Λ•U). This ‘Res’, which is a com-
plicated map and differs quite drastically from the canonical ‘res’ on T (QG), together with
the natural deflation maps induced by U � U/N to finite normal subgroups N of U , allows
us to pass to sub- and factor groups and thus to employ an induction argument on the order
of G/Z(G), which is simultaneously carried out on both sides of the logarithmic diagram : on
the left (multiplicative) side by using further congruences on abelian pseudomeasures, and on
the right (additive) side where we profit from the uniqueness of t. I should perhaps remark
that there is no analogue of ‘Res’ in the work of FröhlichTaylor.

Secondly, we need a new congruence on units in Λ•G, namely the so-called Möbius-Wall
congruence

Theorem C1.
∑

A≤U≤G µQ(U/A)ver
A
U (res

U
Gε) ≡ 0 mod trQ(Λ•A) for units ε ∈ Λ•G.

Here, A is an abelian normal open subgroup of G, Q def
= G/A and µQ is the Möbius function

on the partially ordered set of subgroups of the finite l-group Q, so µQ(1) = 1, µQ(Q
′) =

−
∑

1≤Q′′<Q′ µQ(Q
′′) for 1 ̸= Q′ ≤ Q.

And thirdly, this congruence between Serre’s abelian pseudomeasures

Theorem C2.
∑

A≤U≤G µQ(U/A)ver
A
U (λUab) ≡ 0 mod trQ(Λ•A)

So res UGε has been replaced by λUab ∈ K1(Λ•U
ab) in Theorem C1. Note that C2 repeats the

torsion congruence if [G : A] = l.

The proof of Theorem C1 is very technical and, to be honest, ugly. Theorem C2 can again
be derived from the DeligneRibet q-expansion principle for Hilbert modular forms (and thus
their paper, besides the one of Wiles on the Main Conjecture, is the second basic ingredient
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in our proof of (emc)). Both congruences combined permit us to run the above mentioned
induction argument (on the index [G : Z(G)]) for getting ‘t ∈ im (L)’. However, carrying out
all this is probably too much for now and, already for time restrictions, I better don’t go closer
into the details of the proof anymore.
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