TRIVIAL UNITS IN \(RG \)

By

Jürgen Ritter
Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany

and

Sudarshan K. Sehgal
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton-Alberta T6G 2G1, Canada

[Received 12 August 2003. Read 21 August 2004. Published 11 March 2005.]

Abstract

A characterisation of group rings \(RG \) with trivial units is given when \(R \) is a \(G \)-adapted ring. A formula for the rank of the centre of \(\mathcal{U}(\mathbb{Z}G) \) is given. A characterisation of \(RG \) with trivial central units is given for some \(G \)-adapted rings \(R \).

1. Introduction

Let \(\mathbb{Z}G \) be the integral group ring of a finite group \(G \). It is a classical result of G. Higman [5; 9, p. 57] that the unit group of \(\mathbb{Z}G \) is trivial if and only if \(G \) is abelian of exponent 2, 3, 4 or 6 or is a Hamiltonian 2-group. A unit of \(RG \) is said to be trivial if it is of the form \(rg, r \in R, g \in G \). Thus the trivial units of \(\mathbb{Z}G \) are simply \(\pm g, g \in G \). It is also known that central units of \(\mathbb{Z}G \) are trivial if and only if \(G \) satisfies the following condition [8]:

\[
(j, |G|) = 1 \Rightarrow g^j \sim g^\varepsilon, \quad \varepsilon = \pm 1 \quad (\forall g \in G). \tag{1.1}
\]

This result has been extended to arbitrary groups in [3].

The purpose of this paper is threefold. First, we extend the Higman result to \(G \)-adapted rings of coefficients. A ring \(R \) is said to be \(G \)-adapted if it is an integral domain of characteristic zero and if no prime divisor of \(|G| \) is contained in the unit group \(R^\times \) of \(R \). Recently, Hertweck [4] has studied central units of \(RG \) for arbitrary \(G \) and \(G \)-adapted \(R \). Our rings \(R \) will be \(G \)-adapted and \(G \) will be finite throughout this paper.

The second result computes the rank of the group of central units of \(\mathbb{Z}G \). The special case when \(G \) is abelian is due to Ayoub and Ayoub see [1; 9, p. 54]. Also, as a corollary we see the classification of groups with trivial central units in \(\mathbb{Z}G \).

Finally, imposing a further assumption on \(R \), we extend the trivial central units result to \(RG \).

*Corresponding author; e-mail: sehgal@ualberta.ca

The concrete statements are these:

Theorem 1. Suppose that R is G-adapted and that G is a finite group. Then $\mathcal{U}(RG)$ is trivial if and only if one of the following holds:

1. G is abelian of exponent 2, and $R_2^\times = \{a \in R^\times : a \equiv 1 \pmod{2}\}$ is torsion.
2. G is abelian of exponent 3, and $R_3^\times = \{u = a + b\omega \in R[\omega] : u \equiv 1 \pmod{\pi}, a^2 + b^2 - ab \in R^\times\}$ is torsion. Here, ω is a primitive 3rd root of unity and $\pi = \omega - 1$.
3. G is abelian of exponent 4, and $R_4^\times = \{u = a + bi \in R[i] : u \equiv 1 \pmod{i - 1}, a^2 + b^2 \in R^\times\}$ is torsion.
4. G is abelian of exponent 6, and R_3^\times and R_2^\times are torsion.
5. G is a Hamiltonian 2-group, $G = Q_8 \times E$, where Q_8 is the quaternion group of order 8 and E is an elementary abelian 2-group and the following three conditions are satisfied:
 a. the field K of quotients of R has no solution to the equation $x^2 + y^2 + z^2 = -1$
 b. R_2^\times is torsion
 c. the kernel of the norm map $R[i, j, k] \to R$, $N(a + bi + cj + dk) = a^2 + b^2 + c^2 + d^2$ is torsion.

Theorem 2. The rank $\rho = \rho(\mathcal{U}(RG))$ of the centre of the unit group of the integral group ring of a finite group G is given by

$$\rho = \frac{1}{2} (c - 2h,Q + h,R)$$

where c is the number of conjugacy classes in G, h,Q is the number of \mathbb{Q}-conjugate classes in G and h,R is the number of real classes in G.

Theorem 3. Let R be G-adapted. Suppose that the unit group $(R \otimes \mathbb{Z}[\chi(G)]^\times / |G|)^\times$ is torsion. Then $\mathcal{U}(RG)$ is trivial if and only if $(R \otimes \mathbb{Z}[\chi])^\times$ is torsion for all complex characters χ.

Our notations are standard as in [10]. As has been said already, our ring R is G-adapted throughout. We set $K = \text{Quot}(R)$ for its field of fractions. We denote by ζ_n a primitive nth root of unity, and we write $\omega = \zeta_3$, $\pi = \omega - 1$ and $i = \zeta_4$. Also, R^\times denotes the group of units of R. By $\mathcal{U}(RG)$, $\mathcal{U}_1(RG)$ we mean the groups of units of RG, respectively of units of RG having augmentation one. The cyclic group of order n will be denoted by C_n. It needs to be mentioned that $R[\omega]$ is the subring of the field $K(\omega)$ consisting of elements $a + b\omega$, $a, b \in R$. This representation is not necessarily unique, since ω may be contaiomed in K. When we consider a set $S = \{u = a + b\omega \in R[\omega] : u$ has property $P\}$ we simply understand the set of all those u that have a representation satisfying property P.

2. Some lemmas

We collect some known results and prove preliminary lemmas. The following result and its corollaries are well known.

Lemma 2.1. If R is a G-adapted ring and $u = \sum u(g)g \in U(RG)$ is a torsion element with $u_1 \neq 0$ then $u = u_1$.

Proof. See [9, corollary 1.4, p. 45]. □

Corollary 2.2. If R is a G-adapted ring, then any torsion central unit of RG is of the form rg, $r \in R$, $g \in G$.

Corollary 2.3. Let V be a finite subgroup of $U_1(RG)$, the group of augmentation one units, then $|V|$ is a divisor of $|G|$.

Proof. Let $e = \frac{1}{|V|} \sum_{v \in V} v$. Then $e = e^2 \in KG$, where K is the field of quotients of R. We compute the trace of the matrix of the regular representation of e. We see by Lemma 2.1 that

$$\text{tr}(e) = \frac{1}{|V|} \sum_{v \in V} \text{tr}(v) = \frac{1}{|V|} \text{tr}(1) = \frac{|G|}{|V|}.$$

On the other hand, this trace is an integer. So $|V|$ is a divisor of $|G|$ as claimed. □

Lemma 2.4. $R^\times_1 = \{ a + b\omega \in R[\omega] : a + b\omega \equiv 1 (\text{mod } \pi), a^2 - ab + b^2 \in R^\times \}$ is a subgroup of $R[\omega]^\times$.

Proof. This is directly checked. The inverse of $a + b\omega$ is $c(a - b) - cb\omega$ with $c = (a^2 - ab + b^2)^{-1}$; the product of $a + b\omega, c + d\omega \in R^\times_1$ is $(ac - bd) + (ad + bc - bd)\omega$, and $(ac - bd)^2 - (ac - bd)(ad + bc - bd) + (ad + bc - bd)^2 = (a^2 - ab + b^2)(c^2 - cd + d^2)$. Note that only $\omega^2 = -1 - \omega$ is used and not that $\omega \mapsto \omega^2$ induces an automorphism of $R[\omega]$, which need not be true. □

Similarly, we have

Lemma 2.5. $R^\times_4 = \{ a + bi \in R[i] : a + bi \equiv 1 (\text{mod } i - 1), a^2 + b^2 \in R^\times \}$ is a subgroup of $R[i]^\times$.

We shall implicitly be using the next result throughout.

Lemma 2.6. Suppose that the ring S is an integral extension of R. Suppose $u \in R$ has an inverse in S. Then u has an inverse in R.

Proof. If u was not in R^\times, then $u \in \mathfrak{p}$ for some prime ideal \mathfrak{p} of R and thus, by [7, proposition 9, p. 9], also in \mathfrak{P} for some prime ideal \mathfrak{P} of S, which is a contradiction. □
Lemma 2.7. Suppose that R is G-adapted. Then $\mathcal{U}(RC_2)$ is trivial if and only if $R_2^\times = \{u \in R^\times : u \equiv 1 (\text{mod } 2)\}$ is torsion.

Proof. Write $C_2 = \langle x \rangle$. Then we have an embedding
\[
\lambda : RC_2 \to R \oplus R, \quad \lambda(x) = (1, -1).
\]
a) (\Rightarrow) Suppose $\mathcal{U}(RC_2)$ is trivial. Then $\mathcal{U}_1(RC_2) = C_2$. Suppose we have an element u of infinite order in R_2^\times. Let $\gamma = \frac{1+u}{2} + \frac{1-u}{2} x \in RC_2$. Then $\lambda(\gamma) = (1, u)$. Therefore, $\mathcal{U}(RC_2)$ has an element of infinite order, which is a contradiction, proving this implication.

b) (\Leftarrow) Let $\gamma \in \mathcal{U}_1(RC_2)$. Write $\gamma = a + bx$. Then $\lambda(\gamma) = (a + b, a - b) = (1, a - b)$. Therefore, $a - b$, which is $\equiv 1 (\text{mod } 2)$, is a unit of R. By assumption, it is torsion. Thus there exists an integer k so that $\lambda(\gamma^k) = 1$, and therefore $\gamma^k = 1$. It follows by Lemma 2.1 that $\gamma \in C_2$, as desired. \hfill \blacksquare

Lemma 2.8. Suppose that R is G-adapted. Then $\mathcal{U}(RC_3)$ is trivial if and only if $R_3^\times = \{u = r + s\omega \in R[\omega] : u \equiv 1 (\text{mod } \pi), r^2 - rs + s^2 \in R^\times\}$ is torsion.

Proof. (\Rightarrow) Assume that $\mathcal{U}(RC_3)$ is trivial. Suppose we have in R_3^\times an element $u \equiv 1 (\text{mod } \pi)$, $u = A + B\omega$, $A, B \in R$, $A^2 - AB + B^2 \in R^\times$, and $o(u) = \infty$ (i.e., order of u is infinite). Let $C_3 = \langle x \rangle$. Consider the embedding
\[
\lambda : RC_3 \to R \oplus R[\omega] \oplus R[\omega], \quad \lambda(x) = (1, \omega, \omega^2).
\]
Indeed, if $a + bx + cx^2 \mapsto 0$, then $a + b + c = 0$, $(a - c) + (b - c)\omega = 0 = (a - b) + (c - b)\omega$, so $a - c = b - a = -c - a - a$, and $a = 0 = b = c$ follows.

Now, $u^3 = A_1 + B_1\omega$ with $A_1 = A^3 + B^3 - 3AB^2$, $B_1 = 3(A^2B - AB^2)$. Let us find the preimage of $(1, u^3, A_1 + B_1\omega^2)$ under λ. We wish to find $a, b, c \in R$ so that $\lambda(a + bx + cx^2) = (1, u^3, x)$, $x = A_1 + B_1\omega^2$. Remember that $u \equiv 1 (\text{mod } \pi)$ gives $u^3 \equiv 1 (\text{mod } \pi^3)$, and so $u^3 \equiv 1 (\text{mod } 3)$. It follows that $A_1 \equiv 1 (\text{mod } 3)$. Then the elements
\[
a + b + c = 1, \quad a + b\omega + c\omega^2 = A_1 + B_1\omega, \quad a + b\omega^2 + c\omega = A_1 + B_1\omega^2 = x.
\]
Set $\gamma = a + bx + cx^2$. Then $\lambda(\gamma) = (1, u^3, x)$. Since $u^3 \in R_3^\times$, $u^3x \equiv A_1^2 - A_1B_1 + B_1^2 \in R^\times$. It follows that $x \in R[\omega]^\times$ as well. Also, $x = A_1 + B_1\omega^2 = (A_1 - B_1) - B_1\omega \in R_3^\times$.

Then we can find $\mu \in RC_3$ so that $\lambda(\mu) = (1, u^{-3}, x^{-1})$. It follows that γ is a unit of RC_3 having augmentation one and infinite order. This is a contradiction, proving this implication.

(\Leftarrow) Let $\gamma = a + bx + cx^2 \in \mathcal{U}_1(RC_3)$. Then
\[
\gamma = a + bx + cx^2 \mapsto (a + b + c, a + b\omega + c\omega^2, a + b\omega^2 + c\omega).
\]
In fact,
\[\lambda(y) = (1, 2a + b - 1 + (a + 2b - 1)\omega, 2a + b - 1 + (a + 2b - 1)\omega^2) = (1, u, v), \]

where \(u, v \) are units of \(R[\omega] \). Also, \(u \equiv 1 \pmod{\pi} \) and \(v \equiv 1 \pmod{\pi} \). Moreover, \(u \) and \(v \) are units of \(R[\omega] \), and thus \(uv \) (being an element of \(R \)) is in \(R^* \) by Lemma 2.6. Hence \(u, v \in R_3^* \). Thus \(u \) and \(v \) are torsion and hence \(\gamma \) is torsion. Since \(R \) is \(G \)-adapted, \(\gamma \in C_3 \), as desired. \(\blacksquare \)

3. The quaternion group \(Q_8 \) of order 8

In this section we characterise when \(RQ_8 \) has trivial units only. We fix notation. \(R \) is a \(G \)-adapted ring and \(K \) is its field of quotients. Also,

\[Q_8 = \langle x, y : x^4 = y^4 = 1, xy = x^{-1} \rangle. \]

We have

Proposition 3.1. \(U_1(RQ_8) = Q_8 \iff \) the three conditions below are satisfied:

1. \(R_2^2 = \{ u \in R^* : u \equiv 1 \pmod{2} \} \) is torsion, and
2. the kernel of the norm map \(N[i, j, k] \rightarrow R \) given by \(N(a + bi + cj + dk) = a^2 + b^2 + c^2 + d^2 \), is torsion. Here, \(i, j, k \) are the usual quaternions in the division ring \(\mathbb{H}_K = K \otimes \mathbb{Q} \mathbb{H}_0 \supset R \otimes \mathbb{Z}[i, j, k] = R[i, j, k] \).

Proof. Note that due to 0) \(\mathbb{H}_K \) is a division ring.

(a) \(\Rightarrow \) If \(K \) has a solution as in 0), then \(KQ_8 \) splits [9, p. 169] and contains nontrivial nilpotent elements. By removing denominators we can assume that \(RQ_8 \) has a nonzero element \(\eta \) with \(\eta^2 = 0 \). Then \(1 + \eta \) is a unit of \(RQ_8 \). By assumption, \(1 + \eta = g \) and \((g - 1)^2 = 0 \). This gives \(g = 1 \) and \(\eta = 0 \), a contradiction, proving 0).

Since \(RC_2 \subset RQ_8 \) we have 1) by Lemma 2.7. It remains only to prove 2). The isomorphism \(KQ_8 \simeq K \oplus K \oplus K \oplus K \oplus \mathbb{H}_K \) induces an injection

\[\lambda : RQ_8 \rightarrow R \oplus R \oplus R \oplus R \oplus R[i, j, k] \]

\[\lambda(x) = (1, 1, -1, -1, i), \quad \lambda(y) = (1, -1, 1, -1, j). \]

Suppose we have \(u = a + bi + cj + dk \in R[i, j, k] \), \(a^2 + b^2 + c^2 + d^2 = 1 \) and \(o(u) = \infty \).

We observe that \(u^2 = a^2 - b^2 - c^2 - d^2 + 2abi + 2acj + 2adk \), so that the coefficients of \(i, j, k \) in \(u^2 \) are \(\equiv 0 \pmod{2} \) and the first coefficient is \(\equiv 1 \pmod{2} \). Replace \(u \) by \(u^2 \). We want to lift \(u \) to \(\gamma \in RQ_8 \) with augmentation one. Write \(\gamma = (a_0 + a_1 x + a_2 x^2 + a_3 x^3 + b_1 y + b_2 y^3 + c_1 xy + c_2 x^3 y) \in RQ_8 \). Then

\[\lambda(\gamma) = (a_0 + a_1 + a_2 + a_3 + b_1 + b_2 + c_1 + c_2, a_0 + a_1 + a_2 + a_3 - b_1 - b_2 - c_1 - c_2, a_0 - a_1 + a_2 - a_3 + b_1 + b_2 - c_1 - c_2, a_0 - a_1 + a_2 - a_3 - b_1 - b_2 + c_1 + c_2, (a_0 - a_2) + (a_1 - a_3)i + (b_1 - b_2)j + (c_1 - c_2)k). \]

We wish to solve for \(\gamma \in U_1(RQ) \) the equation \(\lambda(\gamma) = (1, 1, 1, 1, u) \). The augmented matrix of this system of linear equations in \(a_0, a_1, a_2, a_3, b_1, b_2, c_1, c_2 \) is
We consider the two cases separately.

If we now take a unit g of infinite order. Since the first four components of g is torsion. Hence it follows by the assumption 1) that g has infinite order, this is a contradiction, proving 2).

(b) \equiv First, we show that $U_1(RQ_8)$ is torsion. Suppose there exists a $\gamma \in U_1(RQ_8)$ of infinite order. Since the first four components of $\lambda(\gamma)$ can be viewed as the components of $\overline{\gamma}$ in $R(Q_8/\mathcal{Q})$, we have $\lambda(\gamma) = (1, \pm 1, \pm 1, \pm 1, \pm 1)$. Replace γ by γ^2 to obtain

$$\lambda(\gamma) = (1, 1, 1, 1, u), \quad u = (a_0 - a_2) + (a_1 - a_3)i + (b_1 - b_2)j + (c_1 - c_2)k,$$

where $\gamma = a_0 + a_1x + a_2x^2 + a_3x^3 + b_1y + b_2y^2 + c_1xy + c_2x^2y \in U_1(RQ_8)$. Also, $a_0 + a_1 + a_2 + a_3 + b_1 + b_2 + c_1 + c_2 = 1$. Then

$$N(u) = (a_0 - a_2)^2 + (a_1 - a_3)^2 + (b_1 - b_2)^2 + (c_1 - c_2)^2$$

$$= \sum a_i^2 \pm \sum b_i^2 \pm \sum c_i^2 \equiv 1 \pmod{2}.$$

It follows by the assumption 1) that $N(u^k) = 1$, which implies by 2) that u^k is torsion. Hence γ is of finite order, which is a contradiction.

If we now take a unit $\gamma \in U_1(RQ_8)$, then $o(\gamma)$ must divide 8 by Corollary 2.3, but it can not be 8 (as RQ_8 is non-commutative). Thus we may suppose that $o(\gamma) = 2$ or 4. We consider the two cases separately.

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & a \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & b \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & c \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{bmatrix}
\]

which is equivalent to

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & a \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & b \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & c \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{bmatrix}
\]

This gives the equations

\[
\begin{align*}
a_0 + a_2 &= 1, \quad a_0 - a_2 &= a \\
b_1 + b_2 &= 0, \quad b_1 - b_2 &= c \\
c_1 + c_2 &= 0, \quad c_1 - c_2 &= d \\
a_1 + a_3 &= 0, \quad a_1 - a_3 &= b.
\end{align*}
\]

These can be solved as $b, c, d \equiv 0 \pmod{2}$ and $a \equiv 1 \pmod{2}$. The element γ is a unit, as $(1, 1, 1, 1, u^{-1})$ can also be lifted. Because γ has infinite order, this is a contradiction, proving 2).
(i) Suppose \(o(\gamma) = 2 \). If \(\lambda(\gamma) = (1, 1, 1, 1, \ast) \), then \(\ast = -1 \) and \(\gamma = x^2 \). Otherwise, \(\lambda(\gamma) = (1, -1, -1, 1, \pm 1) \) is a typical expression—the middle triple might be \((1, -1, -1)\) or \((-1, 1, -1)\). We choose an element \(g \in Q_8 \) of order 4 so that \(\lambda(\gamma g) = (1, 1, 1, 1, u) \) with \(o(u) = 4 \); in the expression this is given by \(g = xy \) and \(u = k \).

We claim

\[
\text{if } o(u) = 4 \text{ then } (1, 1, 1, 1, u) \text{ has no preimage.} \tag{3.1}
\]

Since \(K[i, j, k] \) is a division ring, \(u^2 = -1 \). Write \(u = a + bi + cj + dk \). Then

\[
a^2 - b^2 - c^2 - d^2 + 2abi + 2acj + 2adk = -1.
\]

It follows that \(a^2 - b^2 - c^2 - d^2 = -1, 0 = ab = ac = ad \). Thus either \(a \neq 0, b = 0 = c = d \), \(a^2 = -1 \) or \(a = 0 \) and \(b^2 + c^2 + d^2 = 1 \). The first case is not possible due to 0).

We are left with the possibility \(b^2 + c^2 + d^2 = 1 \); \((1, 1, 1, 1, u) = \lambda(\gamma), u^2 = -1 \). If we could solve this for \(\gamma \) then it follows from the equation (1.1) that \(b, c \) and \(d \) are \(\equiv 0(\mod 2) \). This contradiction completes the proof in this case.

(ii) It remains to consider the case when \(o(\gamma) = 4 \). We know from (3.1) that \(\lambda(\gamma) \neq (1, 1, 1, 1, \ast) \). Then a typical expression for \(\lambda(\gamma) \) is \(\lambda(\gamma) = (1, -1, -1, 1, u) \). Then \(\lambda(\gamma \text{xy}) = (1, 1, 1, 1, uk) \).

We have \(N(u)^4 = 1 = N(uk)^4 \). It follows that \(uk \) is torsion. The situation is \(\lambda(\gamma \text{xy}) = (1, 1, 1, 1, uk) \). As before, \(o(u) \) can be 1, 2 or 4. It follows by (3.1) that \(o(uk) \neq 4 \). If \(uk = 1 \) then \(\gamma \in Q_8 \). If \(o(uk) = 2 \) then \(uk = -1 \) and \(\lambda(\gamma \text{xy}) = (1, 1, 1, 1, -1) \). It follows that \(\gamma \text{xy} = x^2 \) and \(\gamma \in Q_8 \). This completes the proof of the proposition. \(\square \)

4. Proof of Theorem 1

We know from Higman’s theorem (see [9, p. 57]) that \(U(\mathbb{Z} G) \) is trivial if and only if one of the following holds:

1. \(G \) is abelian of exponent 2, 3, 4 or 6;
2. \(G = E \times Q_8 \) where \(E \) is an elementary abelian 2-group.

We have to find necessary and sufficient conditions on the \(G \)-adapted ring \(R \) so that \(U(RG) \) is trivial for the groups in Higman’s theorem. We have already taken care of some of the basic groups in Sections 2 and 3. We also need to handle \(C_4 \), which we do below.

Lemma 4.1. \(U_1(RC_4) = C_4 \iff R_4^* = \{ u = x_1 + x_2 i \in R[i], \ u \equiv 1 \mod (i - 1), \ x_1^2 + x_2^2 \in R^* \} \) is torsion.

Proof:

(a) \(\Rightarrow \) Write \(C_4 = \langle x \rangle \). We have an injection

\[
\lambda : RC_4 \to R \oplus R \oplus R[i] \oplus R[i]
\]

given by \(\lambda(x) = (1, -1, i, -i) \). Suppose we have \(u = x_1 + x_2 i \in R_4^* \) of infinite order. Note that \(u^2 \equiv 1(\mod 2) \) by \((i - 1)^2 = -2i \). So \(u^2 = x_1^2 - x_2^2 + 2x_1x_2i \equiv 1(\mod 2) \).
and consequently, \(x_1^2 - x_2^2 \equiv 1 \pmod{2} \). Replace \(u \) by \(u^2 \) to assume
\[
u = x + \beta \implies x \equiv 1 \pmod{2} \quad \text{and} \quad \beta \equiv 0 \pmod{2}.
\]

We solve \(\gamma = a + bx + cx^2 + dx^3 \) with \(\lambda(\gamma) = (1, 1, x + \beta i, x - \beta i) \), namely, by taking \(a = \frac{x+1}{2}, b = \beta / 2, c = \frac{x-1}{2}, d = -\beta / 2 \) all in \(R \). Then \(\gamma \in \mathcal{U}_1(RC_4) \), as similarly \((1, 1, (x + \beta i)^{-1}, (x - \beta i)^{-1}) \) can be lifted. Also, \(\sigma(\gamma) \) is infinite, which is a contradiction, proving the implication.

(b) \(\Leftarrow \) Let \(\gamma = a + bx + cx^2 + dx^3 \in \mathcal{U}_1(RC_4) \). Going modulo \(C_2 \) we have \(RC_4 \rightarrow (R \oplus R), \quad \overline{\lambda}(\overline{\gamma}) = (1, x), \quad \overline{\lambda}(\overline{\gamma}) = (1, x, -x, -x) \). Then \(\lambda(\gamma^2) = (1, 1, u, v), \) with \(u = A + Bi, v = A - Bi, A, B \in R \). We have \(uv = A^2 + B^2 \in R[\overline{\gamma}] \) and hence \(\in R^\times \). Both \(u \) and \(v \) are \(\equiv 1 \pmod{(i-1)} \) and are torsion by assumption. So \(\gamma^2 \) is torsion and \(\gamma \) is a torsion element of \(\mathcal{U}_1(RC_4) \). Thus \(\gamma \in C_4 \) by Corollary 2.2. ■

Lemma 4.2. Suppose \(G \) is abelian of exponent three. Suppose that \(R \) is \(G \)-adapted and \(RC_3 \times C_3 = \{ u = a + 3v \in R[w] : u \equiv 1 \pmod{\pi}, a^2 - ab + b^2 \in R^\times \} \) is torsion. Then \(\mathcal{U}_1(RG) = G \).

Proof. We proceed by induction on \(|G|\). In view of Lemma 2.8, it suffices to prove that if \(G = C_3 \times G_1, \quad C_3^1 = 1, \quad \mathcal{U}_1(RG_1) = G_1 \), then \(\mathcal{U}_1(RG) = G \). Let us write \(C_3 = \langle x \rangle \). Then we have an embedding
\[
RG = R(C_3 \times G_1) = (RC_3)G_1 \overset{\lambda}{\twoheadrightarrow} RG_1 \oplus R[\omega]G_1 \oplus R[\omega]G_1
\]
given by
\[
\gamma = x_0 + x_1x + x_2x^2 \mapsto (x_0 + x_1 + x_2, x_0 + x_1\omega + x_2\omega^2, x_0 + x_1\omega^2 + x_2\omega).
\]
Suppose \(\gamma \in \mathcal{U}_1(RG) \). Then the augmentation, \(\sigma(\gamma) = 1 = \sum_0^2 \sigma(x_i) \). Thus \(\sum_0^2 x_i \) is a trivial unit of \(RG_1 \). Replacing \(\gamma \) by a suitable power we get \(\lambda(\gamma) = (1, x, \beta) \), where \(\sigma(x) = \sum_0^2 \sigma(x_i)\omega^i \equiv \sum \sigma(x_i)(\mod \pi) \equiv 1(\mod \pi) \). The element \(x \in R[\omega]G_1 \), \(\sigma(x) \in R[\omega] \), so \(\sigma(x) \in R^\times \). The condition \(a^2 - ab + b^2 \in R^\times \) is checked by observing that \(x \mapsto x^{-1} \) is an automorphism of \(G \) and by using Lemma 2.6. Thus \(\sigma(x) \) is torsion. There exists a \(k \) so that \(\sigma(x^k) = 1 \) so that \(x^k \in G_1 \). Therefore, \(x \) is a torsion and we get \(\lambda(\gamma^k) = (1, 1, 1, 1, \ldots) \) for some \(k \). Repeating, we get that \(\lambda(\gamma^{k/m}) = (1, 1, 1, 1, \ldots) \) for some \(m \). Consequently, \(\gamma \) is torsion. It follows by Corollary 2.2 that \(\gamma \in G_1 \) as desired. ■

Using Lemma 4.1, the above proof gives

Lemma 4.3. If \(G \) is a product of cyclic groups of order 4 and \(RC_3 \times C_3 = \{ u = a + bi \in R[i] : u \equiv 1 \pmod{(i-1)}, a^2 + b^2 \in R^\times \} \) is torsion then \(\mathcal{U}_1(RG) = G \).

We need one more result.

Lemma 4.4. Suppose that \(R \) is a \(G \)-adapted ring, \(G = C_2 \times G_1 \). Suppose that \(\mathcal{U}(RG_1) \) and \(\mathcal{U}(RC_2) \) are trivial. Then \(\mathcal{U}(RG) \) is also trivial.
PROOF: Write $C_2 = \langle x \rangle$, $G = C_2 \times G_1$. Then we have an embedding $RG \hookrightarrow RG_1 \oplus RG_1$ given by $\lambda(x + \beta x) = (x + \beta, x - \beta)$ for $x, \beta \in RG_1$. Suppose that $\gamma = x + \beta x \in U_1(RG)$. Then $x + \beta$ and $x - \beta$ are both units of RG_1 with the augmentation $\varepsilon(x + \beta) = 1$. Thus by assumption $x + \beta = g \in G_1$. Multiplying by g^{-1} we can assume $\gamma \mapsto (1, \text{unit}) = (1, rg_1)$, $r \in R$, $g_1 \in G_1$. Then $x + \beta = 1$, $x - \beta = rg_1$, $2x = 1 + rg_1$. It follows that $g_1 = 1$. We have $x = \frac{1 + \sqrt{2}}{2}$, $\beta = \frac{1 - \sqrt{2}}{2}$ and $\gamma = \frac{1 + \sqrt{2}}{2} + \frac{1 - \sqrt{2}}{2} x$ is a unit of RC_2. This implies that either $1 + r = 0$ and $\gamma = x$ or $1 - r = 0$ and $\gamma = 1$, which completes the proof. \[\blacksquare\]

4.5. Completion of the proof of Theorem 1

The proof now follows from Proposition 3.1, Lemma 4.4, Lemma 4.3 and Lemma 4.2.

5. Rank of $\mathfrak{Z}(U(\mathbb{Z}G))$

In this section we compute the rank of the group of central units of the integral group ring of a finite group. From this the formula for the abelian case due to Ayoub and Ayoub [1] easily follows, as does the criterion for the triviality of central units due to the authors [10]. We collect a couple of well-known results below.

Two elements a and b of G are said to be Q-conjugate ($a \sim_Q b$) if there exists an $x \in G$ such that $x^{-1}bx = ax$ for some $r \in (\mathbb{Z}/|G|) \times$ in the Galois group of the cyclotomic field $\mathbb{Q}(\zeta_{|G|})$. Then it is known (see [2, pp 282, 306]), that

(5.1) The number of Q-conjugate classes of G equals the number of irreducible QG-modules and equals the number of non-conjugate cyclic subgroups of G. We denote this number by h_Q.

A conjugacy class C_g is said to be a real class if $g^{-1} \in C_g$. A character of G is said to be real valued if all its values $\chi(g)$ are real. Then we know (see [6, p. 537]) that

(5.2) The number of real classes of G is equal to the number of real valued complex irreducible characters of G.

We denote this number by h_R.

Now, we can state the main result of this section.

Theorem 2. The rank $\rho = \rho(\mathfrak{Z}(U(\mathbb{Z}G)))$ of the centre of the unit group of the integral group ring of a finite group G is given by

$$\rho = \frac{1}{2} (c - 2h_Q + h_R),$$

where c is the number of conjugacy classes in G, h_Q is the number of Q-conjugate classes in G and h_R is the number of real classes in G.
PROOF. Let us decompose $\mathbb{Q}G$ as a direct sum of simple rings:

$$\mathbb{Q}G = \bigoplus S.$$

Then we know, for the centres, (see [6, p. 545]) that

$$3\mathbb{Q}G = \bigoplus \mathbb{Q}(\chi), \quad (5.3)$$

a direct sum of character fields, with the sum ranging over the irreducible complex characters χ of G modulo Galois conjugation over \mathbb{Q}. Let us denote the degree $[\mathbb{Q}(\chi) : \mathbb{Q}]$ by d_χ. Let O_χ be the ring of algebraic integers of $\mathbb{Q}(\chi)$. Then we have a containment of orders

$$3(\mathbb{Z}G) \subset \bigoplus O_\chi.$$

Therefore, $\rho = \sum \rho(O_\chi^\times)$, whereby the rank of an abelian group is understood, simply the rank of its torsion-free part. By Dirichlet’s unit theorem, if $\mathbb{Q}(\chi)$ is complex then $\rho(O_\chi^\times) = \frac{d_\chi}{2} - 1$, and if it is real then $\rho(O_\chi^\times) = d_\chi - 1$. Thus we have

$$\rho = \sum_{\chi \text{ nonreal}} \left(\frac{d_\chi}{2} - 1\right) + \sum_{\chi \text{ real}} (d_\chi - 1) \quad (5.4)$$

where \sum denotes the sum modulo Galois conjugacy over \mathbb{Q}. We claim

$$\sum d_\chi = h_{\mathbb{R}}. \quad (5.5)$$

We know from (5.3) that

$$3(\mathbb{R}G) = \cdots \bigoplus \mathbb{R} \otimes \mathbb{Q} \mathbb{Q}(\chi) \bigoplus \cdots.$$

If χ is real then $\mathbb{R} \otimes \mathbb{Q} \mathbb{Q}(\chi) = d_\chi \mathbb{R}$, otherwise $\mathbb{R} \otimes \mathbb{Q} \mathbb{Q}(\chi) = \frac{d_\chi}{2} \mathbb{C}$. Thus

$$3(\mathbb{R}G) = \cdots \bigoplus \mathbb{R} \bigoplus \cdots \bigoplus \mathbb{R} \bigoplus \mathbb{C} \bigoplus \cdots \bigoplus \mathbb{C}$$

and (5.5) follows. We also have

$$\sum_{\chi \text{ real}} d_\chi + \sum_{\chi \text{ nonreal}} d_\chi = c,$$

the number of conjugacy classes in G. Thus

$$\sum_{\chi \text{ nonreal}} d_\chi = c - h_{\mathbb{R}}. \quad (5.6)$$

Combining 5.4 and 5.6, we have

$$\rho = \sum_{\chi \text{ nonreal}} \left(\frac{d_\chi}{2} - 1\right) + \sum_{\chi \text{ real}} (d_\chi - 1)$$

$$= \sum_{\chi \text{ nonreal}} \frac{d_\chi}{2} + \sum_{\chi \text{ real}} d_\chi - \sum 1.$$
Corollary 5.7. (Ayoub and Ayoub [1]). If G is a finite abelian group then the rank of the unit group $U(\mathbb{Z}G)$ of the integral group ring $\mathbb{Z}G$ is given by
\[r = \frac{1}{2}(c - h_R) + h_R - h_Q \]
\[= \frac{1}{2}(c + h_R - 2h_Q) \]

PROOF. Clearly $c = |G|$ and $h_Q = \ell$ in the abelian case. Also, in this case, $g \sim g^{-1}$ if and only if $g = g^{-1}$. Consequently, $h_R = (n_2 + 1)$.

Corollary 5.8. (Ritter and Sehgal [8]). Let G be a finite group. Then all central units of $\mathbb{Z}G$ are trivial (equivalently $\rho(U(\mathbb{Z}G)) = 0$) if and only if G satisfies the following condition:

given $a \in G$ and $(j, |a| = 1)$, then $a^j \sim a^e, e = \pm 1$.

PROOF. Let us first assume that $\rho = 0$ and deduce the condition of the corollary. We have

\[\rho = 0 \iff \frac{c - h_R}{2} + h_R = h_Q. \]

A class C_g is real if and only if $g^{-1} \in C_g$ (see [6, p. 587]). Also, we have $(c - h_R)$ non-real conjugacy classes C_g, in this case, $C_g \neq C_{g^{-1}}$. Then $C_g \cup C_{g^{-1}}$ belong to the same \mathbb{Q}-conjugate class. We have thus $(c - h_R)/2$ pairs. This gives us in all h_Q subsets of \mathbb{Q}-conjugate classes, all disjoint. These must be all the \mathbb{Q}-conjugate classes. Hence $g^j \sim g$ or g^{-1} for all $(j, |g|) = 1$.

For the proof of the converse, let us assume the condition. For $(j, |g|) = 1$ we can only have $g^j \sim g^e, e = 1, -1$. Thus the only \mathbb{Q}-conjugate classes are C_g or $C_g \cup C_{g^{-1}}$. Their total number $h_Q = h_R + \frac{c - h_R}{2}$. Thus $\rho = 0$ as desired. ■

6. Trivial central units

Let G be a finite group. Express $\mathbb{Q}G$ as a direct sum

\[\mathbb{Q}G = \bigoplus S_i \]

of simple rings S_i; the sum ranges over the irreducible complex characters of G modulo Galois conjugation over \mathbb{Q}. Let χ be one such and D the corresponding representation. So there exists a unique S so that $D(S) \neq 0$. There is an isomorphism

\[3 \mathbb{Q}G \cong \bigoplus \mathbb{Q}(\chi), \]

which on class sums C_g is
where $h_g = |C|$. Moreover

$$ \mathfrak{Z}(ZG) \leq \sum_{\chi} Z[\chi]. $$

Let R be a G-adapted ring. Then

$$ \mathfrak{Z}(RG) = R \otimes \mathfrak{Z}(ZG) \leq \sum_{\chi} R \otimes Z[\chi]. $$

If the centre of $U(ZG)$ is trivial then every Q is rational or imaginary quadratic (see [10, p. 22]). For an imaginary quadratic field $Q(\sqrt{m})$ the integers are given by $Z \oplus \sqrt{m} Z$ or $Z \oplus \frac{1+\sqrt{m}}{2} Z$. In this case we enlarge the direct sum on the right by another copy of $Q(\chi)$ or $Z[\chi]$ with the corresponding projection the algebraic conjugate. Then we have

$$ \mathfrak{Z}(RG) \leq \sum_{\chi} R \otimes Z[\chi] \quad (6.1) $$

with c (= the number of conjugacy classes in G) summands (so the sum now ranges over all irreducible complex χ). Remember the map is

$$ \sum_{\chi_1, C_i \mapsto \sum_{\chi} h_i C_i \mapsto \sum_{\chi} h_i \chi_1(g_i) \chi_1(1), \ldots, \sum_{\chi} h_i \chi_c(g_i) \chi_c(1) \quad (6.2) $$

where $h_i = |C_i|$ and χ_1, \ldots, χ_c are the irreducible complex characters.

We shall now characterise groups G so that central units $\mathfrak{U}(ZG)$ are trivial, namely, of the form $rg, r \in R, g \in G$. Unfortunately, we need to impose a rather strong condition on R. As before, ζ_n is a primitive n^{th} root of unity.

Theorem 3. Let R be a ring that is G-adapted. Suppose that the unit group $(R \otimes Z[\chi])^\times$ is torsion. Then $\mathfrak{U}(RG)$ is trivial if and only if $(R \otimes Z[\chi])^\times$ is torsion for all complex characters χ.

Proof.

a) (\Rightarrow) Suppose that $(R \otimes Z[\chi])^\times$ is torsion. From the embedding

$$ \mathfrak{Z}(RG) \leq \sum_{\chi} R \otimes Z[\chi] $$

we conclude that $\mathfrak{U}(\mathfrak{Z}(RG))$ is torsion. It follows by (2.2) that all central units of RG are trivial as R is G-adapted.

b) (\Rightarrow) Now we assume that all central units of RG are trivial. Then $\mathfrak{Z}(RG)$ is trivial. We have (6.1) and (6.2). Suppose that there exists an $\varepsilon \in (R \otimes Z[\chi])^\times$ of infinite order for some $\chi \neq 1$. By assumption, we can find an n so that $\varepsilon^n \equiv 1(\text{mod } |G|)$, hence also an n so that $\varepsilon^n \equiv 1(\text{mod } |G|^d)$ for some given exponent d. Let us replace ε by ε^n.
We represent the map (6.2) as
\[
\sum \varepsilon_i C_i \mapsto \begin{bmatrix} h_i \varepsilon_i(g_j) \\ \varepsilon_i(1) \end{bmatrix}_{i,j} \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_c \end{bmatrix} = M \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_c \end{bmatrix},
\]
where
\[
M = \begin{bmatrix} 1 & h_1 & \cdots & h_c \\ 1 & \vdots & \star \\ 1 \end{bmatrix}.
\]
We define \(\hat{Z} = \mathbb{Z}[\varepsilon_i(g_j) : 1 \leq i, j \leq c] \) and claim for the determinant that there exists an exponent \(d \) such that
\[
|M| = \det M \text{ is a divisor of } |G|^d \text{ in } \hat{Z}.
\]
Let \(M^* \) be the conjugate transpose. Then the orthogonality relations yield
\[
|M| = \left| \frac{h_i \varepsilon_i(g_j)}{\varepsilon_i(1)} \right| = \frac{\prod h_j}{\prod \varepsilon_i(1)} |\varepsilon_i(g_j)|,
\]
\[
|MM^*| = \left(\frac{\prod h_j}{\prod \varepsilon_i(1)} \right)^2 |\varepsilon_i(g_j)\varepsilon_j(g_p)| = \frac{\prod h_j}{(\prod \varepsilon_i(1))^2} \left| \sum_k h_k \varepsilon_i(g_k) \varepsilon_j(g_k) \right| = \frac{|G|^c \cdot \prod h_j}{(\prod \varepsilon_i(1))^2}.
\]
Thus we have \(|MM^*| (\prod \varepsilon_i(1))^2 = |G|^c (\prod h_j) \), and the claim follows from \(h_j | G |, \varepsilon_i(1) | G \) and \(M \in (\mathbb{Z})_{c \times c} \) (see [6, p. 481]).

We wish to find \(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_c \) so that
\[
M \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_c \end{bmatrix} = \begin{bmatrix} \vdots \\ \bar{\varepsilon} \end{bmatrix}
\]
with the dots on the right representing ones,

where \(\bar{\varepsilon} \) is the algebraic conjugate of \(\varepsilon \). We have
\[
\begin{bmatrix} 1 & h_2 \cdots h_c \\ 1 & \vdots & \star \\ 1 \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_c \end{bmatrix} = \begin{bmatrix} \vdots \\ \bar{\varepsilon} \end{bmatrix}.
\]
Subtracting the first row from all others gives
where the dots on the right now represent zeros. We forget the first equation
\[\sum_i h_i \alpha_i = 1 \]
and are left with
\[M = \begin{bmatrix} \alpha_1 & \ldots & \alpha_c \\ \vdots & \ddots & \vdots \\ \alpha_1 & \ldots & \alpha_c \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_c \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ \varepsilon - 1 \\ \varepsilon - 1 \end{bmatrix}, \]

Note that \(\det M = \det M' \). Multiplication with the adjoint matrix of \(M' \) from the
left yields
\[(\text{Adj } M')M' \begin{bmatrix} \alpha_2 \\ \vdots \\ \alpha_c \end{bmatrix} = (\text{Adj } M') \begin{bmatrix} \vdots \\ \varepsilon - 1 \\ \varepsilon - 1 \end{bmatrix}, \]
i.e.,
\[|M'| \begin{bmatrix} \alpha_2 \\ \vdots \\ \alpha_c \end{bmatrix} = (\text{Adj } M') \begin{bmatrix} \vdots \\ \varepsilon - 1 \\ \varepsilon - 1 \end{bmatrix}. \]

Since \(\det M = \det M' \) is a divisor of \(|G|^d \) and \(\varepsilon \equiv 1 \mod |G|^d \), the system of equations
can be solved in \(R \otimes_{\mathbb{Z}} \hat{\mathbb{Z}} \). In order to see that the unique solution actually belongs to
\(R = R \otimes_{\mathbb{Z}} \hat{\mathbb{Z}} \), we apply the automorphisms \(\sigma \) from the Galois group \(A \) of \(\mathbb{Q}(\chi) \) to it. Note that \(A \) is an elementary abelian 2-group and that, to \(\chi \) with \(\hat{\mathbb{Z}} \neq \mathbb{Z}[\chi] \), there exists a \(\sigma_\chi \in A \), which is trivial on all \(\mathbb{Z}[\chi'] \), \(\chi' \neq \chi \) but \(\neq 1 \) on \(\mathbb{Z}[\chi] \) itself; in particular, \(\sigma_\chi(\epsilon) = \varepsilon \) for our \(\chi \). Since the \(\sigma_\chi \neq 1 \) just interchange two rows of our system of linear equations, they have no influence on its solution. And since they generate \(A \), we find that the solution belongs to \(R \) as desired. The fact that
the solution is a unit follows by considering \(\varepsilon^{-1} \).

Corollary. Let \(R \) be the ring of integers in an algebraic number field \(K \). Then the central
units of \(RG \) are trivial if and only if either \(K = \mathbb{Q} \) and all character fields \(\mathbb{Q}(\chi) \) are rational or imaginary quadratic or \(K \) itself is imaginary quadratic and \(\mathbb{Q}(\chi) \subseteq K \) for all \(\chi \).

This is because \(R \) is a finitely generated \(\mathbb{Z} \)-module, and thus \(R[\varepsilon_{|G|}] / |G| \) is finite.

REFERENCES

